Successfully Overcoming Project Disaster

The Challenge

In 2019, Collicutt was approached by one of our clients who had just won the electrical design and build contract for a new residential high rise to be built in downtown Los Angeles. Part of that contract included the supply of an emergency backup generator that would provide power for the building during a power grid outage that is so common in California.

Besides the usual backup power requirements for a building of this type, there were a few challenges that made this project unique:

  • This unit was going to be placed on the ninth floor of the building.
  • Once the unit was in place on the ninth floor, the building would be completed around and above it.
  • The crane doing the lifting was being removed immediately following the generator installation to make way for the remaining building construction. This meant that the generator was on the construction schedule’s critical path.
  • Because this building is downtown LA, the logistics surrounding the lift of the generator were very complicated. Traffic restrictions had to be minimized and the lift radius of the crane was restricted due to the surrounding buildings and infrastructure.

The Solution

When the contractor started their design process, they reached out to our team at Collicutt. We worked with them and their engineering teams to understand the building electrical loads, design constraints, construction schedule, and the lifting constraints.

We proposed a customized MTU 12V4000 DS1500 solution complete with:

  • IBC rating (earthquake rated)
  • Rypos DPF and custom mounting rack
  • Custom sound attenuating enclosure
  • Custom tank to meet fire code for a rooftop design in downtown LA

Disaster Strikes!

The project kicked off and proceeded smoothly until the completed unit left our fabrication facility. But then disaster struck!

Shortly after the truck carrying the generator left the fabrication facility, we received news that they drove under an overpass without checking height restrictions and our custom built generator struck that overpass and was totaled in an instant! The only good news was that no one was injured in the accident.

However, we now had a huge problem! We needed to get a new generator built in record time in the middle of one of the worst global supply chain challenges we have seen in recent times. If we failed to get the generator to site before the building crane was dismantled, we would be on the hook for obtaining permits to close roads in downtown LA and assembling a crane capable of lifting a 1500kW generator to the ninth floor of a building that was already constructed!

We immediately placed the order for the new generator and worked with MTU to expedite the build of the generator in any way they could. We also worked with our fabricator and had them build the enclosure and other custom components ahead of time so that they would just have to set the components in place and bolt them down once the generator was ready. To maintain schedule our fabricator’s staff agreed to work around the clock to complete their work once the generator was delivered to them!

Talk about team work!

The Outcome

Although there were many tense moments throughout this build process, we were able to pull our team together and work through supply chain issues and other manufacturing logistics to get the generator produced as quickly as possible.

In addition to this, thankfully, the building construction had been delayed due to unrelated issues so the building crane was still in place to lift our generator!

This left one final challenge that we had to overcome. Much of the building had now been constructed so the options for lifting the generator to the ninth floor were limited. The building crane had limited lifting capacity and it had limited lifting radius due to the proximity of the surrounding buildings and roadways.

To overcome this challenge, we had the generator transported to a riggers yard where we drained the fluids (oil and coolant) and removed the enclosure. We then dismantled the generator package down to it’s frame. This would allow us to lift the frame, engine, alternator, and radiator in individual lifts.

See the photos below for some of the teardown progress:

  1. Completed unit arrived at riggers

2. The enclosure was removed

3. Removal of components began

We transported the components from the riggers yard to the construction site over a two day period and lifted each component starting with the frame. The video below illustrates the tight lifting window that was being navigated:

As each component was lifted, we secured it into place and “rebuilt” the generator package on the ninth floor of the building! After two days of crane picks and placements, we had the generator back together in its final location ready for commissioning and startup! This allowed our client to complete construction of their building and remove the building crane without the generator scope causing any further project delays!

This project is a great example of; applied expertise, project management, technician talent, and overall teamwork being used to overcome huge challenges!

 

For more information on our power generation services or solutions, contact us via email or at the number below:

888.682.6888 or info@collicutt.com

 

Read More

Grid Limitations

Grid Limitations

Series: Three Main Problems With the Way We Do Power

We’re continuing in our power generation series. And today we’re talking about Problem #2, which is ‘Grid limitations’.

So what are some of the limitations of our power grid system? And how does that affect us?

The first problem is, is that it’s expensive.

Most people pay actually 50% of their utility bill is actually the cost of just getting power to your facility. And the other half is actually the cost of the energy.

The second problem is delayed access.

A lot of times we’ll have projects where we want to increase our capacity at our facility, or we want to create a new location where we need power, and there just isn’t grid access or there isn’t the capacity. This has the ability to delay projects, or significantly limit their size.

And the third issue is unreliability.

This issue is super relevant to California these days. As as we move into the dry season and there’s concerns of fires, and we see those rolling blackouts again: Power reliability is a huge issue and it’s going to cause issues around power shortages, power outages and facility shutdowns.

So what are some of the ways that Collicutt can help you with some of these limitations?

Using a technology called Combined Heat and Power, or CHP, we’re able to generate both electricity and heat onsite using a single fuel source while achieving fuel efficiencies of 93%.

Combined Heat and Power

And one of the reasons why this is so much more efficient than what currently we’re using the grid is that we’re actually getting rid of a lot of the waste along the way. We’re getting rid of that that lost heat at the point of generation, and we’re able to achieve as high as 93% overall fuel efficiency.

So Why CHP? (3 Reasons)

First reason: Cost Savings

CHO can save you significant amounts of money by generating power on site, especially when you look at the rates that we’re paying here in California. In California, we’re paying about 26 cents ($0.26/kWh) in total: 13 cents of that is the cost of transmission and the other 13 cents is the energy cost.

With CHP, you can generate power for as little as 7-9c/kWh, saving 2c/kWh in heat (fuel) costs:

Combined Heat and Power can save your money

Combined Heat and Power is an effective way of generating power and heat onsite while incurring great savings. Additionally, by having generation capabilities on site, your power reliability is increased

Second Reason: Sustainability.

in Alberta, we can save as much as 3000 tons of CO2 output per year for every megawatt of CHP installed. Why is that? Because power here in Alberta is predominantly generated by coal. And by by using clean fuel source like natural gas, salvaging the heat, offsetting the fuel source that would have provided that heat in the facility, we can get that down to a 0.2-0.25 tonnes/MWh.

Lower your facility’s environmental output

 

Let’s look in California. Even in California, where we have incredibly clean power, You can actually see a 14% reduction in CO2 output by using CHP.

Third Reason: Reliability.

By having on-site power generation capacity, the power reliability at the facility is dramatically increased.

 

Conclusion:

So, cost effective, reliable, sustainable. CHP is a great application for a lot of these problems relating to the grid limitations.

Read More