Successfully Overcoming Project Disaster

The Challenge

In 2019, Collicutt was approached by one of our clients who had just won the electrical design and build contract for a new residential high rise to be built in downtown Los Angeles. Part of that contract included the supply of an emergency backup generator that would provide power for the building during a power grid outage that is so common in California.

Besides the usual backup power requirements for a building of this type, there were a few challenges that made this project unique:

  • This unit was going to be placed on the ninth floor of the building.
  • Once the unit was in place on the ninth floor, the building would be completed around and above it.
  • The crane doing the lifting was being removed immediately following the generator installation to make way for the remaining building construction. This meant that the generator was on the construction schedule’s critical path.
  • Because this building is downtown LA, the logistics surrounding the lift of the generator were very complicated. Traffic restrictions had to be minimized and the lift radius of the crane was restricted due to the surrounding buildings and infrastructure.

The Solution

When the contractor started their design process, they reached out to our team at Collicutt. We worked with them and their engineering teams to understand the building electrical loads, design constraints, construction schedule, and the lifting constraints.

We proposed a customized MTU 12V4000 DS1500 solution complete with:

  • IBC rating (earthquake rated)
  • Rypos DPF and custom mounting rack
  • Custom sound attenuating enclosure
  • Custom tank to meet fire code for a rooftop design in downtown LA

Disaster Strikes!

The project kicked off and proceeded smoothly until the completed unit left our fabrication facility. But then disaster struck!

Shortly after the truck carrying the generator left the fabrication facility, we received news that they drove under an overpass without checking height restrictions and our custom built generator struck that overpass and was totaled in an instant! The only good news was that no one was injured in the accident.

However, we now had a huge problem! We needed to get a new generator built in record time in the middle of one of the worst global supply chain challenges we have seen in recent times. If we failed to get the generator to site before the building crane was dismantled, we would be on the hook for obtaining permits to close roads in downtown LA and assembling a crane capable of lifting a 1500kW generator to the ninth floor of a building that was already constructed!

We immediately placed the order for the new generator and worked with MTU to expedite the build of the generator in any way they could. We also worked with our fabricator and had them build the enclosure and other custom components ahead of time so that they would just have to set the components in place and bolt them down once the generator was ready. To maintain schedule our fabricator’s staff agreed to work around the clock to complete their work once the generator was delivered to them!

Talk about team work!

The Outcome

Although there were many tense moments throughout this build process, we were able to pull our team together and work through supply chain issues and other manufacturing logistics to get the generator produced as quickly as possible.

In addition to this, thankfully, the building construction had been delayed due to unrelated issues so the building crane was still in place to lift our generator!

This left one final challenge that we had to overcome. Much of the building had now been constructed so the options for lifting the generator to the ninth floor were limited. The building crane had limited lifting capacity and it had limited lifting radius due to the proximity of the surrounding buildings and roadways.

To overcome this challenge, we had the generator transported to a riggers yard where we drained the fluids (oil and coolant) and removed the enclosure. We then dismantled the generator package down to it’s frame. This would allow us to lift the frame, engine, alternator, and radiator in individual lifts.

See the photos below for some of the teardown progress:

  1. Completed unit arrived at riggers

2. The enclosure was removed

3. Removal of components began

We transported the components from the riggers yard to the construction site over a two day period and lifted each component starting with the frame. The video below illustrates the tight lifting window that was being navigated:

As each component was lifted, we secured it into place and “rebuilt” the generator package on the ninth floor of the building! After two days of crane picks and placements, we had the generator back together in its final location ready for commissioning and startup! This allowed our client to complete construction of their building and remove the building crane without the generator scope causing any further project delays!

This project is a great example of; applied expertise, project management, technician talent, and overall teamwork being used to overcome huge challenges!

 

For more information on our power generation services or solutions, contact us via email or at the number below:

888.682.6888 or info@collicutt.com

 

Read More

What is a D-UPS and Why Should You Care?

D-UPS stands for Dynamic Uninterruptible Power Supply. It can also be referred to as a dynamic rotary uninterruptible power supply (DRUPS) or as a flywheel energy storage power system.

So what is it and what does it do?

Many data centers, hospitals, and other industries that depend on stable electric power have back up emergency generators for when the power grid fails as they simply cannot tolerate a power failure. To complicate things further, many of these industries cannot tolerate a power source that falls outside a narrow performance tolerance.

The default solution to this situation has been to power these critical applications through an Uninterruptible Power System or UPS that is battery based. Basically, utility power runs a battery charging system which charges a large battery bank. The battery bank then powers the critical loads by converting its DC power to highly stable AC power using a DC to AC inverter.

Although these systems have many advantages and have a proven track record in some industries, they do have many shortcomings, including the need for massive battery banks capable of storing enough power to last during an extended power grid failure.

The Solution

The D-UPS eliminates the need for costly and finicky battery banks while still providing a highly dependable and stable power supply for critical loads. Basically, a D-UPS is a combination of an electric motor (which also doubles as a generator), a flywheel, a diesel engine, and a reactor (or choke coil).

A D-UPS system depicted in the diagram below.

Essentially, utility power is fed into the D-UPS system. It powers an electric motor which spins a large electro-mechanical flywheel. This flywheel stores  kinetic energy. The electric motor, in conjunction with a choke coil, works as an active filter and removes power quality problems from the utility power (e.g., harmonics, RFI, frequency variations, etc.).

When the utility power fails, the stored kinetic energy in the flywheel is released and powers the electric motor which now becomes a generator. This generator now provides uninterrupted power to the critical load. At the same time, the diesel engine fires up and, within 2 to 10 seconds, takes over from the flywheel to drive the generator providing sustained, uninterrupted, stable power for the critical systems downstream.

Take Action!

If you are involved in the construction of a new facility that requires high quality, uninterruptible power or if you looking at upgrading your existing back up power systems it is worth considering a D-UPS system.

Collicutt is able to work with you in doing the evaluation and we are able to provide the Kinolt D-UPS system through our association with MTU. If the evaluation determines that a static UPS is required, we can work with you to provide the backup generators for this system.

We currently maintain over 360MW of power generation equipment for data centers in California and many of these are D-UPS systems from various manufacturers.

If you have questions about your existing power generation system or would like to inquire about a new system, give us a call. We are always glad to help!

Read More

The Importance of Load Bank Testing

How do you know your emergency generator will work when the power grid fails? You have invested all this money in a back up generator but what assurance do you have that it will work when you need it most?

We have all heard the stories of businesses that have had to stop production or send employees home because of power failures. Then there are the situations where power failure puts the organization at risk of loosing their inventory or even the extreme case of risk of life at a health care or elder care facility.

The loss of power for any business or organization is not an acceptable outcome!

What Can You Do

So what can you do to make sure your back up generator is ready for use?

One of the best things you can do to ensure your emergency generator is ready for service is to complete a periodic load bank test. A load bank test evaluates the generator’s performance by simulating up to 100% of the generator load within a controlled environment.

What Does Load Banking Do For Your Generator?

 When a load bank is performed on your generator it:

  1. Validates Overall Generator Functionality – Completing a load bank test allows the generator to run under a load and validates all of the components of the generator. Voltages and currents are monitored along with temperatures and other critical operating parameters.
  2. Burns Off Unburnt Fuel – The generator has the opportunity to remove any unburnt fuel that may have accumulated in the DPF, a condition called wet stacking.
  3. Removes Carbon Build Up – The generator needs to run at operating temperature to allow for any carbon build up to burn off from injectors, rings pistons, in the DPF, etc.
  4. Checks Coolant System – Load Banking allows for the validation of proper coolant temperatures and the radiator functionality while the generator is at full load.

Take Action

Rather than just assuming that your backup generator will work properly when the power fails, take action now and have your generator load banked. Technicians will monitor all aspects of your generator during the load bank process and identify any areas needing adjustment or repair. This will prepare your emergency generator for any utility power outage!

Call us if you need any assistance with load banking. We have factory trained technicians and load banks ready to provide service to any make or model of generator!

Also, check out these related posts for more generator maintenance tips:

  1. Top 6 Reasons Why Your Emergency Generator Will Fail to Start
  2. What is an ATS and Why Should You Care
  3. Preserving an Engine
  4. How a Pre-Lube System Can Save You $500,000
  5. How to Avoid DPF Failure with These Easy Steps
  6. The Number 1 Reason Your Generator will Fail

 

Read More