Post-Secondary Institution Project

Background

Red Deer Polytechnic is a post-secondary institution located in Red Deer, Alberta that has been in operation since 1964.

Red Deer Polytechnic installed a 1MW CHP to reduce their utility costs, while reducing their carbon footprint as well.

 

Combined heat and power (CHP) is the simultaneous generation of power and heat from a single fuel source, allowing system efficiencies of up to 93%.

 

Company Name: Red Deer Polytechnic

Building Type: Post-Secondary Institution

Location: Red Deer, Alberta

Power System Installed: 1MW CHP System

 

 

The Solution

Collicutt Energy was hired to design and build the 1MW CHP system that was then installed in the building in 2018.

  • This unit helps lower the institution’s utility costs. Thermal energy is captured from the engine jacket water and the engine exhaust.
  • The unit produces 1,007kW of electricity and as much as 1,054kW of thermal energy. When all heat is consumed the grid intensity of power generated is 0.24kg/kWh, 55% less than current average Alberta grid intensity.

System Sizing

The system size was determined based on the baseline electrical and thermal load.

This ensured that all the electricity and as much of the heat produced would be effectively utilized by the building.

System Manufacturing

Once Collicutt completed the engineering and design, the CHP system was manufactured at Collicutt’s 80,000ft2 facility in Red Deer.

A walk-in style enclosure was selected allowing routine maintenance and inspection to be conducted comfortably even in outside conditions as low as -40⁰C.

 

The plant has been running for 3 years and just recently had a top end overhaul completed.

 

Check out another case study about how we helped a recreation center lower the building’s carbon footprint HERE.

Check out our LinkedIn page for daily posts.

Read More

Siemens SGE-100EM 2MW Engine

 

 

 

 

 

“The best-in-class solution with the best-in-class cycle time”

  • Robust, compact design provides more relief for long-lasting performance
  • Spark-ignited lean-burn unit ensures low emissions
  • Innovative pre-combustion chambers provide efficient and stable combustion
  • 12 unique high-volume cylinders deliver highest displacement
  • Less maintenance compared to 16-cylinder engine options
  • Fast cycle times and implementation
  • Smallest footprint in the competitive set

 

 

“Highest electrical efficiency in the 2 MW-class”

Before the EM series, when it came to 2 MW-class engines, your options were limited. Now, there’s a powerful new choice available:

the new SGE-EM gas engines from Siemens

The result of years of development, testing, refinement, and innovative engineering, they deliver a number of benefits that make them a true competitive choice.

Uncompromising performance to meet ever-growing demands

Economic pressures. Customer demands. Reliability concerns. Regulatory standards. In the world of power generation, you face plenty of challenges. If you want to successfully overcome them, you need to have the best solution in place. The new SGE-EM gas engines are your best solution.

 

 

“Innovative engine design and combustion technology”

 

Siemens is known for innovation, and the new E-Series engines carry that torch of ingenuity with a unique cylinder design that produces the highest displacement in the 2 MW-class, innovative pre-combustion chambers, spark-ignited lean-burn control capabilities, and a robust overall design that ensures maximum flexibility in a wide variety of conditions.

  • Natural gas–powered engines
  • Efficient and stable Combustion
  • Exceptional Displacemen
  • Low maintenance
  • Optimized materials

Maximum efficiencies in the smallest footprint.

The new E-Series engines are not only the new competitive choice in the 2 MW-class, they’re also the most compact. Their unique ability to deliver high power output with incredibly low emissions helps you create a smaller footprint—both physical and environmental.

 

Read More

Grid Limitations

Grid Limitations

Series: Three Main Problems With the Way We Do Power

We’re continuing in our power generation series. And today we’re talking about Problem #2, which is ‘Grid limitations’.

So what are some of the limitations of our power grid system? And how does that affect us?

The first problem is, is that it’s expensive.

Most people pay actually 50% of their utility bill is actually the cost of just getting power to your facility. And the other half is actually the cost of the energy.

The second problem is delayed access.

A lot of times we’ll have projects where we want to increase our capacity at our facility, or we want to create a new location where we need power, and there just isn’t grid access or there isn’t the capacity. This has the ability to delay projects, or significantly limit their size.

And the third issue is unreliability.

This issue is super relevant to California these days. As as we move into the dry season and there’s concerns of fires, and we see those rolling blackouts again: Power reliability is a huge issue and it’s going to cause issues around power shortages, power outages and facility shutdowns.

So what are some of the ways that Collicutt can help you with some of these limitations?

Using a technology called Combined Heat and Power, or CHP, we’re able to generate both electricity and heat onsite using a single fuel source while achieving fuel efficiencies of 93%.

Combined Heat and Power

And one of the reasons why this is so much more efficient than what currently we’re using the grid is that we’re actually getting rid of a lot of the waste along the way. We’re getting rid of that that lost heat at the point of generation, and we’re able to achieve as high as 93% overall fuel efficiency.

So Why CHP? (3 Reasons)

First reason: Cost Savings

CHO can save you significant amounts of money by generating power on site, especially when you look at the rates that we’re paying here in California. In California, we’re paying about 26 cents ($0.26/kWh) in total: 13 cents of that is the cost of transmission and the other 13 cents is the energy cost.

With CHP, you can generate power for as little as 7-9c/kWh, saving 2c/kWh in heat (fuel) costs:

Combined Heat and Power can save your money

Combined Heat and Power is an effective way of generating power and heat onsite while incurring great savings. Additionally, by having generation capabilities on site, your power reliability is increased

Second Reason: Sustainability.

in Alberta, we can save as much as 3000 tons of CO2 output per year for every megawatt of CHP installed. Why is that? Because power here in Alberta is predominantly generated by coal. And by by using clean fuel source like natural gas, salvaging the heat, offsetting the fuel source that would have provided that heat in the facility, we can get that down to a 0.2-0.25 tonnes/MWh.

Lower your facility’s environmental output

 

Let’s look in California. Even in California, where we have incredibly clean power, You can actually see a 14% reduction in CO2 output by using CHP.

Third Reason: Reliability.

By having on-site power generation capacity, the power reliability at the facility is dramatically increased.

 

Conclusion:

So, cost effective, reliable, sustainable. CHP is a great application for a lot of these problems relating to the grid limitations.

Read More